论文标题

有限的视野和负面信息在有限集统计(FISST)中的作用

The Role of Bounded Fields-of-View and Negative Information in Finite Set Statistics (FISST)

论文作者

LeGrand, Keith, Ferrari, Silvia

论文摘要

负面信息的作用对于搜索检测 - 轨道问题的作用尤其重要,在搜索检测轨道问题中,对象数量尚不清楚,并且传感器视野的大小远小于感兴趣区域的大小。本文介绍了一种系统地结合视野几何形状以及位置和对象包含/排除证据的方法,并将其随机有限设置为多目标基数分布。该方法是针对一组代表性的多对象分布的,并通过传感器计划问题进行了证明,该问题涉及多个bernoulli过程,最多有100个潜在的目标。

The role of negative information is particularly important to search-detect-track problems in which the number of objects is unknown a priori, and the size of the sensor field-of-view is far smaller than that of the region of interest. This paper presents an approach for systematically incorporating knowledge of the field-of-view geometry and position and object inclusion/exclusion evidence into object state densities and random finite set multi-object cardinality distributions. The approach is derived for a representative set of multi-object distributions and demonstrated through a sensor planning problem involving a multi-Bernoulli process with up to one-hundred potential targets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源