论文标题

稀疏实验设计的顺序在线取样

Sequential online subsampling for thinning experimental designs

论文作者

Pronzato, Luc, Wang, HaiYing

论文摘要

我们考虑了一个设计问题,其中实验条件(设计点$ x_i $)以i.i.d. \随机变量的序列形式呈现,并以未知的概率度量$μ$生成,并且只能选择给定比例$α\ in(0,1)$。目的是即时选择优秀的候选人$ x_i $,并最大化相应信息矩阵的凹函数$φ$。最佳解决方案对应于构建最佳有限设计度量$ξ_α^*\leqμ/α$,这是$μ$未知的困难,并且必须在线构建$ξ_α^*$。拟议的构造依赖于当前信息矩阵上$φ$的定向派生的阈值$τ$的定义,$τ$的值是由该定向导数的一定分位数固定的。结合递归分位数估计得出非线性两次尺度随机近似方法。它可以应用于非常长的设计序列,因为只有当前信息矩阵和估计的分位数需要存储。证明了融合到最佳设计。提出了各种说明性的例子。

We consider a design problem where experimental conditions (design points $X_i$) are presented in the form of a sequence of i.i.d.\ random variables, generated with an unknown probability measure $μ$, and only a given proportion $α\in(0,1)$ can be selected. The objective is to select good candidates $X_i$ on the fly and maximize a concave function $Φ$ of the corresponding information matrix. The optimal solution corresponds to the construction of an optimal bounded design measure $ξ_α^*\leq μ/α$, with the difficulty that $μ$ is unknown and $ξ_α^*$ must be constructed online. The construction proposed relies on the definition of a threshold $τ$ on the directional derivative of $Φ$ at the current information matrix, the value of $τ$ being fixed by a certain quantile of the distribution of this directional derivative. Combination with recursive quantile estimation yields a nonlinear two-time-scale stochastic approximation method. It can be applied to very long design sequences since only the current information matrix and estimated quantile need to be stored. Convergence to an optimum design is proved. Various illustrative examples are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源