论文标题
通过元学习的场景自适应视频框架插值
Scene-Adaptive Video Frame Interpolation via Meta-Learning
论文作者
论文摘要
视频框架插值是一个具有挑战性的问题,因为每个视频都有不同的场景,具体取决于前景和背景运动,框架速率和遮挡的种类。因此,具有固定参数的单个网络很难在不同的视频中概括。理想情况下,每个方案都可以具有不同的网络,但这在计算上是不可行的。在这项工作中,我们建议通过利用在测试时间容易获得的其他信息来调整模型,但在先前的工作中尚未利用。我们首先通过网络的简单微调来显示“测试时间适应”的好处,然后通过合并元学习来大大提高其效率。我们仅通过单个梯度更新获得了显着的性能增长,而没有任何其他参数。最后,我们证明我们的元学习框架可以轻松地用于任何视频框架插值网络,并可以一致地在多个基准数据集上提高其性能。
Video frame interpolation is a challenging problem because there are different scenarios for each video depending on the variety of foreground and background motion, frame rate, and occlusion. It is therefore difficult for a single network with fixed parameters to generalize across different videos. Ideally, one could have a different network for each scenario, but this is computationally infeasible for practical applications. In this work, we propose to adapt the model to each video by making use of additional information that is readily available at test time and yet has not been exploited in previous works. We first show the benefits of `test-time adaptation' through simple fine-tuning of a network, then we greatly improve its efficiency by incorporating meta-learning. We obtain significant performance gains with only a single gradient update without any additional parameters. Finally, we show that our meta-learning framework can be easily employed to any video frame interpolation network and can consistently improve its performance on multiple benchmark datasets.