论文标题

个性化标签建议的对抗性学习

Adversarial Learning for Personalized Tag Recommendation

论文作者

Quintanilla, Erik, Rawat, Yogesh, Sakryukin, Andrey, Shah, Mubarak, Kankanhalli, Mohan

论文摘要

由于深度卷积神经网络的成功和大规模数据集的可用性,我们最近在图像分类方面看到了巨大进展。大多数现有工作都集中在单标签图像分类上。但是,通常有多个与图像关联的标签。现有有关多标签分类的作品主要基于实验室策划的标签。人类以不同的方式将标签分配给其图像,这主要是基于他们的兴趣和个人标记行为。在本文中,我们解决了个性化标签建议的问题,并提出了一个可以在大规模数据集上培训的端到端深网。在网络中以无监督的方式在网络中学习了用户质量,网络对用户偏好和视觉编码进行关节优化。对用户偏好和视觉编码的联合培训使网络可以有效地将视觉偏好与标记行为集成,以获得更好的用户建议。此外,我们建议使用对抗性学习,该学习强制执行网络来预测类似于用户生成的标签的标签。我们在两个不同的大规模和公开可用的数据集(YFCC100M和NUS范围内)展示了所提出的模型的有效性。与基准和其他最先进的方法相比,所提出的方法在两个数据集上的性能明显更好。该代码可在https://github.com/vyzuer/altreco上公开获取。

We have recently seen great progress in image classification due to the success of deep convolutional neural networks and the availability of large-scale datasets. Most of the existing work focuses on single-label image classification. However, there are usually multiple tags associated with an image. The existing works on multi-label classification are mainly based on lab curated labels. Humans assign tags to their images differently, which is mainly based on their interests and personal tagging behavior. In this paper, we address the problem of personalized tag recommendation and propose an end-to-end deep network which can be trained on large-scale datasets. The user-preference is learned within the network in an unsupervised way where the network performs joint optimization for user-preference and visual encoding. A joint training of user-preference and visual encoding allows the network to efficiently integrate the visual preference with tagging behavior for a better user recommendation. In addition, we propose the use of adversarial learning, which enforces the network to predict tags resembling user-generated tags. We demonstrate the effectiveness of the proposed model on two different large-scale and publicly available datasets, YFCC100M and NUS-WIDE. The proposed method achieves significantly better performance on both the datasets when compared to the baselines and other state-of-the-art methods. The code is publicly available at https://github.com/vyzuer/ALTReco.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源