论文标题
最低订单稳定器免费弱甘针有限元法
The lowest-order stabilizer free Weak Galerkin Finite Element Method
论文作者
论文摘要
最近,提出了一种新的无稳定器弱彩色方法(SFWG),该方法更易于实现且更有效。主要的想法是,通过让$ j \ geq j_ {0} $对于某些$ j_ {0} $,其中$ j $是用于计算弱梯度的多项式的程度,则不再需要常规弱galerkin方法中的稳定术语。后来,在\ cite {al2019note}中,给出了某些类型的有限元空间的$ j_ {0} $的最佳。在本文中,我们使用最佳的收敛顺序,使用三角形网格的分段多项式订单提出了一种新的高效SFWG方案。
Recently, a new stabilizer free weak Galerkin method (SFWG) is proposed, which is easier to implement and more efficient. The main idea is that by letting $j\geq j_{0}$ for some $j_{0}$, where $j$ is the degree of the polynomials used to compute the weak gradients, then the stabilizer term in the regular weak Galerkin method is no longer needed. Later on in \cite{al2019note}, the optimal of such $j_{0}$ for certain types of finite element spaces was given. In this paper, we propose a new efficient SFWG scheme using the lowest possible orders of piecewise polynomials for triangular meshes in $2 D$ with the optimal order of convergence.