论文标题
在家庭面前,克利福德代数与迪拉克矩阵之间的关系
Relations between Clifford algebra and Dirac matrices in the presence of families
论文作者
论文摘要
费米子的内部自由度是在Clifford代数对象描述的自旋牵引家庭理论中,这是$γ^a $'的奇数叠加。安排在Lorentz代数$ s^{ab} $ $(= \ frac {i} {2}γ^aγ^aγ^aγ^aγ^b | _ {a a \ ne b} $ 2} $ 2^frac = frac frac {d rac frac {d rac frac {d rac frac {d rac {d rac frac {d rac {drac frac {d rac {drac frac} {d frac frac} {d frac {d frac frac} {D $ 2^{\ frac {d} {2} -1} $家庭成员。每个家庭的家庭成员都提供了所有观察到的夸克,叶子,古quark和抗卵形的描述,它们出现在家庭中。 $ \ tilde {s}^{ab} $ = \ frac {1} {2} {2} \tildeγ^a \tildeγ^b | _ {a \ ne b} $可以到达家庭。创建操作员,载有家庭成员和家庭量子数字构成了基本媒介。运算符的动作$γ^a $',$ s^{ab} $,$ \tildeγ^a $'s和$ \ tilde {s}^{ab} $,在基本向量上应用,表现为矩阵。在本文中,讨论了$ d =(3+1)$ Clifford空间中的基本矢量,以$γ^a $的矩阵表示形式和$ s^{ab} $的矩阵表示为每个家庭量子数,由$ \ tilde {s}}^{ab} $确定,并用dirac Matrices确定。通过将$ d =(3+1)$空间嵌入$ d =(5+1)$ - 维度空间来讨论Clifford空间中电荷的出现。
The internal degrees of freedom of fermions are in the spin-charge-family theory described by the Clifford algebra objects, which are superposition of an odd number of $γ^a$'s. Arranged into irreducible representations of "eigenvectors" of the Cartan subalgebra of the Lorentz algebra $S^{ab}$ $(= \frac{i}{2} γ^a γ^b|_{a \ne b})$ these objects form $2^{\frac{d}{2}-1}$ families with $2^{\frac{d}{2}-1}$ family members each. Family members of each family offer the description of all the observed quarks and leptons and antiquarks and antileptons, appearing in families. Families are reachable by $\tilde{S}^{ab}$ $=\frac{1}{2} \tildeγ^a \tildeγ^b|_{a \ne b}$. Creation operators, carrying the family member and family quantum numbers form the basic vectors. The action of the operators $γ^a$'s, $S^{ab}$, $\tildeγ^a$'s and $\tilde{S}^{ab}$, applying on the basic vectors, manifests as matrices. In this paper the basic vectors in $d=(3+1)$ Clifford space are discussed, chosen in a way that the matrix representations of $γ^a$ and of $S^{ab}$ coincide for each family quantum number, determined by $\tilde{S}^{ab} $, with the Dirac matrices. The appearance of charges in Clifford space is discussed by embedding $d=(3+1)$ space into $d=(5+1)$-dimensional space.