论文标题

对推荐系统的知识图深度学习:调查

Deep Learning on Knowledge Graph for Recommender System: A Survey

论文作者

Gao, Yang, Li, Yi-Fan, Lin, Yu, Gao, Hang, Khan, Latifur

论文摘要

研究的最新进展表明,知识图(KG)在提供有价值的外部知识以改善建议系统(RS)方面的有效性。知识图能够编码将两个对象与一个或多个相关属性连接的高阶关系。借助新兴图形神经网络(GNN),可以从KG中提取对象特征和关系,这是成功建议的重要因素。在本文中,我们对基于GNN的知识深度推荐系统进行了全面的调查。具体而言,我们讨论了最新的框架,重点关注其核心组件,即嵌入图形模块,以及它们如何解决实用建议问题,例如可伸缩性,冷启动等。我们进一步总结了常用的基准数据集,评估指标以及开源代码。最后,我们总结了调查,并在这个快速增长的领域提出了潜在的研究方向。

Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源