论文标题
IGBO文本文档相似性N-Gram文本表示的比较分析
Comparative Analysis of N-gram Text Representation on Igbo Text Document Similarity
论文作者
论文摘要
信息技术的改进鼓励在创建文本(例如在线资源和新闻文章)中使用IGBO。在任何基于文本的应用程序中,文本相似性非常重要。本文对IGBO文本文档相似性进行了N-Gram文本表示形式的比较分析。它采用了欧几里得的相似性度量,以确定用两个基于单词的N-gram文本表示(Unigram和BigRAM)模型表示的IGBO文本文档之间的相似性。相似度度量的评估基于所采用的文本表示模型。该模型采用面向对象的方法设计,并用Python编程语言实现,并使用自然语言工具包(NLTK)的工具进行设计。结果表明,Umigram表示的文本具有最高的距离值,而BigRam的相应距离值最低。距离值越低,两个文档越相似,并且在需要相似度度量的任务时,模型的质量就更好。随着距离值向下移至零(0),两个文档的相似性增加。理想情况下,所分析的结果表明,在Bigram代表文本上测得的IGBO文本文档相似性给出了准确的相似性结果。当用于文本分类,聚类和排名等任务时,这将带来更好,有效和准确的结果。
The improvement in Information Technology has encouraged the use of Igbo in the creation of text such as resources and news articles online. Text similarity is of great importance in any text-based applications. This paper presents a comparative analysis of n-gram text representation on Igbo text document similarity. It adopted Euclidean similarity measure to determine the similarities between Igbo text documents represented with two word-based n-gram text representation (unigram and bigram) models. The evaluation of the similarity measure is based on the adopted text representation models. The model is designed with Object-Oriented Methodology and implemented with Python programming language with tools from Natural Language Toolkits (NLTK). The result shows that unigram represented text has highest distance values whereas bigram has the lowest corresponding distance values. The lower the distance value, the more similar the two documents and better the quality of the model when used for a task that requires similarity measure. The similarity of two documents increases as the distance value moves down to zero (0). Ideally, the result analyzed revealed that Igbo text document similarity measured on bigram represented text gives accurate similarity result. This will give better, effective and accurate result when used for tasks such as text classification, clustering and ranking on Igbo text.