论文标题
临时网络中的分布式学习:多武器多臂强盗框架
Distributed Learning in Ad-Hoc Networks: A Multi-player Multi-armed Bandit Framework
论文作者
论文摘要
预计下一代网络将具有非常高的峰值速率,但每个用户的预期流量相对较低。对于这种情况,现有的基于中央控制器的资源分配可能会导致大量信号传导(控制通信),从而导致对服务质量(例如下降呼叫),能量和频谱效率产生负面影响。为了克服这个问题,正在设想与其他网络共享频谱的认知临时网络(CAHN)。它们允许某些用户在“免费插槽”中识别和通信,从而减少信号负载,并允许每个基站(密集网络)的用户数量更高。这样的网络打开了许多有趣的挑战,例如资源识别,协调,动态和上下文感知的适应性,用于机器学习和人工智能框架提供新颖的解决方案。在本文中,我们讨论了基于最先进的多武器多武器多武器的分布式学习算法,这些学习算法允许用户适应环境并与其他玩家/用户协调。我们还讨论了各种开放研究问题,以可行地实现CAHN和其他领域中有趣的应用,例如能源收集,物联网和智能电网。
Next-generation networks are expected to be ultra-dense with a very high peak rate but relatively lower expected traffic per user. For such scenario, existing central controller based resource allocation may incur substantial signaling (control communications) leading to a negative effect on the quality of service (e.g. drop calls), energy and spectrum efficiency. To overcome this problem, cognitive ad-hoc networks (CAHN) that share spectrum with other networks are being envisioned. They allow some users to identify and communicate in `free slots' thereby reducing signaling load and allowing the higher number of users per base stations (dense networks). Such networks open up many interesting challenges such as resource identification, coordination, dynamic and context-aware adaptation for which Machine Learning and Artificial Intelligence framework offers novel solutions. In this paper, we discuss state-of-the-art multi-armed multi-player bandit based distributed learning algorithms that allow users to adapt to the environment and coordinate with other players/users. We also discuss various open research problems for feasible realization of CAHN and interesting applications in other domains such as energy harvesting, Internet of Things, and Smart grids.