论文标题

随机PDE通过凸流最小化

Stochastic PDEs via convex minimization

论文作者

Scarpa, Luca, Stefanelli, Ulisse

论文摘要

我们证明了加权能量 - 散引血(WED)的适用性[50]以抽象形式以非线性抛物线抛物线随机偏微分方程为单位。 WED原理在于最小化参数依赖性凸的功能在整个轨迹上的功能。其独特的最小化器对应于随机差异问题的椭圆时期正常化。由于正则化参数趋于零,因此恢复了限制问题的解决方案。特别是,这通过凸优化提供了直接的批准,以实现非线性随机偏微分方程的近似值。

We prove the applicability of the Weighted Energy-Dissipation (WED) variational principle [50] to nonlinear parabolic stochastic partial differential equations in abstract form. The WED principle consists in the minimization of a parameter-dependent convex functional on entire trajectories. Its unique minimizers correspond to elliptic-in-time regularizations of the stochastic differential problem. As the regularization parameter tends to zero, solutions of the limiting problem are recovered. This in particular provides a direct approch via convex optimization to the approximation of nonlinear stochastic partial differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源