论文标题
通过草图引导的渐进式生长甘人的合成和超声图像的版本
Synthesis and Edition of Ultrasound Images via Sketch Guided Progressive Growing GANs
论文作者
论文摘要
超声(US)在诊所中被广泛接受,以进行解剖结构检查。但是,缺乏练习美国扫描的资源,新手经常难以学习操作技巧。同样,在深度学习时代,自动化的US图像分析受到缺乏带注释的样本的限制。有效地综合现实,可编辑和高分辨率的美国图像可以解决问题。该任务具有挑战性,以前的方法只能部分完成它。在本文中,我们为我们的图像合成设计了一个新的框架。特别是,我们首先采用草图生成的对抗网络(SGAN)在条件生成的对抗网络中对对象掩码介绍背景草图。借助丰富的草图提示,Sgan可以通过可编辑和细粒的结构细节生成逼真的美国图像。尽管有效,但SGAN很难产生高分辨率的美国图像。为了实现这一目标,我们将SGAN进一步植入了渐进式生长方案(PGSGAN)。通过平稳生长发电机和鉴别器,PGSGAN可以逐渐合成从低分辨率到高分辨率的我们的图像。通过合成卵巢和卵泡美国图像,我们广泛的感知评估,用户研究和分割结果证明了拟议的PGSGAN的有希望的功效和效率。
Ultrasound (US) is widely accepted in clinic for anatomical structure inspection. However, lacking in resources to practice US scan, novices often struggle to learn the operation skills. Also, in the deep learning era, automated US image analysis is limited by the lack of annotated samples. Efficiently synthesizing realistic, editable and high resolution US images can solve the problems. The task is challenging and previous methods can only partially complete it. In this paper, we devise a new framework for US image synthesis. Particularly, we firstly adopt a sketch generative adversarial networks (Sgan) to introduce background sketch upon object mask in a conditioned generative adversarial network. With enriched sketch cues, Sgan can generate realistic US images with editable and fine-grained structure details. Although effective, Sgan is hard to generate high resolution US images. To achieve this, we further implant the Sgan into a progressive growing scheme (PGSgan). By smoothly growing both generator and discriminator, PGSgan can gradually synthesize US images from low to high resolution. By synthesizing ovary and follicle US images, our extensive perceptual evaluation, user study and segmentation results prove the promising efficacy and efficiency of the proposed PGSgan.