论文标题

较高的自旋分区函数通过de Sitter量子重力中的准模式方法

Higher spin partition functions via the quasinormal mode method in de Sitter quantum gravity

论文作者

Martin, Victoria L., Svesko, Andrew

论文摘要

在本说明中,我们使用准标准模式方法来计算Euclidean de Sitter Space $ S^{2N+1} $上旋转$ S $字段的1循环分区函数。我们使用分析延续处方$ l _ {\ text {ads}} \到IL _ {\ text {ds}} $,而不是从头开始计算准模式频率,而是使用ds/cft通讯中出现,并旋转$ 1的正常模式{ DE Sitter空间上字段的准模式频率。我们比较了计算1循环决定因素的准模式和热内核方法,找到了确切的一致性,然后通过共同体维度上的总和明确地将这些方法与这些方法相关联。我们讨论如何在热$ \ text {ads} _ {2n+1} $上概括以在热球形商上计算1循环分区函数的灯芯旋转$ s^{2n+1}/\ mathbb {z} _ {p} $。我们进一步表明,准模式频率编码了所讨论的球形空间的组理论结构,类似于(1910.07607)和(1910.11913)中对热广告的最新分析。

In this note we compute the 1-loop partition function of spin-$s$ fields on Euclidean de Sitter space $S^{2n+1}$ using the quasinormal mode method. Instead of computing the quasinormal mode frequencies from scratch, we use the analytic continuation prescription $L_{\text{AdS}}\to iL_{\text{dS}}$, appearing in the dS/CFT correspondence, and Wick rotate the normal mode frequencies of fields on thermal $\text{AdS}_{2n+1}$ into the quasinormal mode frequencies of fields on de Sitter space. We compare the quasinormal mode and heat kernel methods of calculating 1-loop determinants, finding exact agreement, and furthermore explicitly relate these methods via a sum over the conformal dimension. We discuss how the Wick rotation of normal modes on thermal $\text{AdS}_{2n+1}$ can be generalized to calculating 1-loop partition functions on the thermal spherical quotients $S^{2n+1}/\mathbb{Z}_{p}$. We further show that the quasinormal mode frequencies encode the group theoretic structure of the spherical spacetimes in question, analogous to the recent analysis made for thermal AdS in (1910.07607) and (1910.11913).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源