论文标题
外力在模块化网络中引起的同步
Synchronization induced by external forces in modular networks
论文作者
论文摘要
在这项工作中,我们研究了由复杂模块化网络中外力驱动的库拉莫托振荡器的同步。动机是在神经皮质中信息处理过程中发生的神经元动力学。神经元组织是模块化的,簇与不同的功能和大脑结构相关,需要不断响应外部刺激。我们研究强迫库拉莫托振荡器的行为,其中只有一小部分受到周期性的外力。当所有振荡器接收外部驱动器时,如果系统强度足够大,系统始终与周期性同步。我们表明,全局同步的条件取决于强迫和网络拓扑,内部耦合强度和外部强迫强度的分数。我们为全局同步的临界力开发了数值和分析计算,这与强制振荡器的分数的函数。作为应用程序,我们研究了电交界处的响应\ textit {c。秀丽隐杆线}使用部分强制库拉莫托模型进行外部刺激网络。将刺激应用于拓扑模块,神经节,由它们的解剖学定位指定,以及官能团(感觉和运动神经元)。我们发现,拓扑模块不包含纯粹的解剖组或功能类别,并且刺激不同类别的神经元的响应非常不同,以同步和相位速度相关性来衡量。在所有情况下,模块化结构都会阻碍完全同步,从而保护系统免受癫痫发作。应用于拓扑模块和功能模块的刺激的响应显示出明显的相关模式或与其他模块的抗相关模式,这些模块与其他混合功能神经元的神经节施加到神经节上时未观察到的其他模块。
In this work we study the synchronization of Kuramoto oscillators driven by external forces in complex modular networks. The motivation is the neuronal dynamics that takes place during information processing in the neural cortex. The neuron organization is modular, with clusters associated to different functions and brain structures, and need to constantly respond to external stimuli. We study the behavior of forced Kuramoto oscillators where only a fraction of them is subjected to a periodic external force. When all oscillators receive the external drive the system always synchronize with the periodic force if its intensity is sufficiently large. We show that the conditions for global synchronization depend on the fraction of nodes being forced and on network topology, strength of internal couplings and intensity of external forcing. We develop numerical and analytical calculations for the critical force for global synchronization as a function of the fraction of forced oscillators. As an application we study the response of the electric junction \textit{C. elegans} network to external stimuli using the partially forced Kuramoto model. Stimuli were applied to topological modules, to ganglia, specified by their anatomical localization, and to the functional groups (sensory and motoneurons). We found that topological modules do not contain purely anamotical groups or functional classes, and that stimulating different classes of neurons lead to very different responses, measured in terms of synchronization and phase velocity correlations. In all cases the modular structure hindered full synchronization, protecting the system from seizures. The responses to stimuli applied to topological and functional modules showed pronounced patterns of correlation or anti-correlation with other modules that were not observed when the stimulus was applied to a ganglion with mixed functional neurons.