论文标题
高效的机器学习方法,以优化高纯净锗检测器的计时分辨率
Efficient Machine Learning Approach for Optimizing the Timing Resolution of a High Purity Germanium Detector
论文作者
论文摘要
我们在这里描述了一种有效的基于机器学习的方法,用于优化用于提取波形到达时间的参数,尤其是通过检测511 KeV歼灭伽马射线生成的参数,该参数是通过60 cm3同轴含量的高纯度晶芯检测器(HPGE)。该方法利用一种称为自组织图(SOM)的人工神经网络(ANN)根据其上升边缘的形状聚集HPGE波形。通过最小化HPGE信号和BAF2闪烁检测器产生的信号之间的时间差,可以找到属于特定群集的HPGE波形的最佳定时参数。将这些可变的时间定时参数应用于HPGE信号,在511 KeV Photo Peak(定义为511 +-50 KeV)上实现了〜4.3 ns的γ稳定时间分辨率,对于整个γ频谱,将〜6.5 ns的定时分辨率分辨率为〜6.5 ns。该计时解决方法是通过模拟核电子获得的最佳方法,而没有模拟优化程序的相应复杂性。我们进一步证明了机器学习方法的通用性和功效,通过将方法应用于样本上的能量正电子后的二级电子飞行时间光谱。
We describe here an efficient machine-learning based approach for the optimization of parameters used for extracting the arrival time of waveforms, in particular those generated by the detection of 511 keV annihilation gamma-rays by a 60 cm3 coaxial high purity germanium detector (HPGe). The method utilizes a type of artificial neural network (ANN) called a self-organizing map (SOM) to cluster the HPGe waveforms based on the shape of their rising edges. The optimal timing parameters for HPGe waveforms belonging to a particular cluster are found by minimizing the time difference between the HPGe signal and a signal produced by a BaF2 scintillation detector. Applying these variable timing parameters to the HPGe signals achieved a gamma-coincidence timing resolution of ~ 4.3 ns at the 511 keV photo peak (defined as 511 +- 50 keV) and a timing resolution of ~ 6.5 ns for the entire gamma spectrum--without rejecting any valid pulses. This timing resolution approaches the best obtained by analog nuclear electronics, without the corresponding complexities of analog optimization procedures. We further demonstrate the universality and efficacy of the machine learning approach by applying the method to the generation of secondary electron time-of-flight spectra following the implantation of energetic positrons on a sample.