论文标题

关于Lie代数的Hausdorff整合

On Hausdorff integrations of Lie algebroids

论文作者

del Hoyo, Matias, Garcia, Daniel López

论文摘要

我们介绍了用于谎言整合定理1和2的Hausdorff版本,并将其应用于研究由泊松歧管引起的Hausdorff symphectic群。为了为这些结果做准备,我们包括关于谎言等效性的讨论,并提出了代数方法的载体方法。我们还包括子公司结果,例如将亚晶型物的整合到非范围的情况下的概括,并详细探讨了叶面类固醇的情况。

We present Hausdorff versions for Lie Integration Theorems 1 and 2 and apply them to study Hausdorff symplectic groupoids arising from Poisson manifolds. To prepare for these results we include a discussion on Lie equivalences and propose an algebraic approach to holonomy. We also include subsidiary results, such as a generalization of the integration of subalgebroids to the non-wide case, and explore in detail the case of foliation groupoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源