论文标题
2D耳语画廊模式的光学微盘数,径向变化指数
Asymptotics for 2D whispering gallery modes in optical micro-disks with radially varying index
论文作者
论文摘要
耳语画廊模式[WGM]是具有特殊特征的谐振模式:它们沿着光腔的边界集中在高极频率下,并且与非常接近真实轴的复杂散射共振相关。 作为完整麦克斯韦系统的经典简化,我们考虑了横向电[TE]或磁性[TM]模式的二维Helmholtz方程。即使在这个2D框架中,对于具有径向变化的光学指数的腔体的高极频率$ m \至\ infty $,WGM共振的渐近扩展也很少。 在这项工作中,使用直接的Schrödinger类比,我们根据有效曲率的符号强调了这种光学微盘中的三个典型行为,该曲线的迹象考虑到了磁盘的半径以及光学索引和其衍生物的值。因此,这对应于突然改变的有效电位(阶跃线性或步骤谐波)或更经典的谐波电位,从而导致三个不同的渐近扩展用于基态能量。 使用多尺度扩展,我们设计了一个统一的程序,以构建具有WGM结构并满足特征素的准共和国家族,并满足了超代价的小型残留$ O(m^{ - \ infty})$。 我们使用黑匣子散射方法显示准共振为$ O(m^{ - \ infty})$接近真共振。
Whispering gallery modes [WGM] are resonant modes displaying special features: They concentrate along the boundary of the optical cavity at high polar frequencies and they are associated with complex scattering resonances very close to the real axis. As a classical simplification of the full Maxwell system, we consider two-dimensional Helmholtz equations governing transverse electric [TE] or magnetic [TM] modes. Even in this 2D framework, very few results provide asymptotic expansion of WGM resonances at high polar frequency $m\to\infty$ for cavities with radially varying optical index. In this work, using a direct Schrödinger analogy we highlight three typical behaviors in such optical micro-disks, depending on the sign of an effective curvature that takes into account the radius of the disk and the values of the optical index and its derivative. Accordingly, this corresponds to abruptly varying effective potentials (step linear or step harmonic) or more classical harmonic potentials, leading to three distinct asymptotic expansions for ground state energies. Using multiscale expansions, we design a unified procedure to construct families of quasi-resonances and associate quasi-modes that have the WGM structure and satisfy eigenequations modulo a super-algebraically small residual $O(m^{-\infty})$. We show using the black box scattering approach that quasi-resonances are $O(m^{-\infty})$ close to true resonances.