论文标题

新闻推荐的图表增强表示学习

Graph Enhanced Representation Learning for News Recommendation

论文作者

Ge, Suyu, Wu, Chuhan, Wu, Fangzhao, Qi, Tao, Huang, Yongfeng

论文摘要

随着在线新闻的爆炸,个性化新闻推荐对于在线新闻平台越来越重要,以帮助其用户找到有趣的信息。现有的新闻推荐方法通过从新闻内容和用户表示与新闻的直接互动(例如,点击)中构建准确的新闻表示,同时忽略用户与新闻之间的高阶相关性,从而实现了个性化。在这里,我们提出了一种新闻推荐方法,该方法可以通过在图形设置中建模其相关性来增强用户和新闻的表示。在我们的方法中,用户和新闻都被视为通过历史用户点击行为构建的两分图中的节点。对于新闻表示,首先利用变压器体系结构来构建新闻语义表示。然后,我们将其与图形注意网络中图中的邻居新闻中的信息相结合。对于用户表示,我们不仅代表用户历史上点击的新闻中的用户,而且专注于将其邻居用户的表示形式合并到图中。改进的大规模现实数据集的性能验证了我们提出的方法的有效性。

With the explosion of online news, personalized news recommendation becomes increasingly important for online news platforms to help their users find interesting information. Existing news recommendation methods achieve personalization by building accurate news representations from news content and user representations from their direct interactions with news (e.g., click), while ignoring the high-order relatedness between users and news. Here we propose a news recommendation method which can enhance the representation learning of users and news by modeling their relatedness in a graph setting. In our method, users and news are both viewed as nodes in a bipartite graph constructed from historical user click behaviors. For news representations, a transformer architecture is first exploited to build news semantic representations. Then we combine it with the information from neighbor news in the graph via a graph attention network. For user representations, we not only represent users from their historically clicked news, but also attentively incorporate the representations of their neighbor users in the graph. Improved performances on a large-scale real-world dataset validate the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源