论文标题

对抗性鲁棒流算法的框架

A Framework for Adversarially Robust Streaming Algorithms

论文作者

Ben-Eliezer, Omri, Jayaram, Rajesh, Woodruff, David P., Yogev, Eylon

论文摘要

我们研究了流算法的对抗性鲁棒性。在这种情况下,如果算法保证其性能保证,即使该流是由沿流算法的输出自适应选择的,并且可以以在线方式做出反应。虽然确定性流算法本质上是强大的,但流文献中的许多核心问题并不接受sublinear空间确定性算法。另一方面,这些问题的经典空间效率随机算法通常在对手上并不稳健。这就提出了一个自然的问题,即是否存在针对这些问题的有效对抗(随机)流算法。 在这项工作中,我们表明答案对于仅插入模型中的各种重要流问题是积极的,包括不同的元素和更常见的$ f_p $ - 估计,$ f_p $ -heavy击球手,熵估计等。对于所有这些问题,我们开发了对抗性稳健的$(1+ \ varepsilon)$ - 近似算法,其所需的空间与最著名的非稳态算法相匹配,最多可与$ \ text {poly}(\ log n,1/\ varepsilon)$乘数(在某些情况下,以及在某些情况下,以及一个不变的因素)。为此,我们开发了几种通用工具,允许一个工具在各种情况下有效地将非运动流算法转换为强大的工具。

We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally $F_p$-estimation, $F_p$-heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust $(1+\varepsilon)$-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a $\text{poly}(\log n, 1/\varepsilon)$ multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源