论文标题
Strassen光谱定理的概括
A generalization of Strassen's spectral theorem
论文作者
论文摘要
鉴于STRASSEN(J. REINEANGEW。MATH。1988)所介绍的渐近光谱的半度性,渐近光谱是一个紧凑的Hausdorff空间,以及从半函数到连续函数环的地图,其中包含所有信息所需的所有信息,以比较元素的大能力。渐近光谱的紧凑性与Strassen工作中假定的界面条件紧密相关。在本文中,我们提出了一种概括,该概括使这种情况放松,同时仍允许通过局部紧凑的Hausdorff空间上的连续功能进行渐近比较。
Given a semiring with a preorder subject to certain conditions, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is a compact Hausdorff space together with a map from the semiring to the ring of continuous functions, which contains all information required to asymptotically compare large powers of the elements. Compactness of the asymptotic spectrum is closely tied with a boundedness condition assumed in Strassen's work. In this paper we present a generalization that relaxes this condition while still allowing asymptotic comparison via continuous functions on a locally compact Hausdorff space.