论文标题

雪佛兰公式用于抗主导量的基本权重,

Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum $K$-group of partial flag manifolds

论文作者

Kouno, Takafumi, Naito, Satoshi, Sagaki, Daisuke

论文摘要

在本文中,我们给出了雪佛兰类型的明确公式,就bruhat图而言,用于量子乘法,用于与与抗偏见的sinuscule基本重量$ - \ varpi_ {k} $ y torus-equivariant quotivariant quotiant quotum $ k $ k $ - \ setminus \ {k \} $)对应于最大(标准)抛物线子组$ p_ {j} $ yinuscule type $ a $ a $,$ d $,$ e $或$ b $的小型类型。通过证明半偶然的部分国旗歧管$ \ mathbf {q} _ {q} _ {j} $ y Minuscule类型的圆环 - 均值$ k $ group的类似公式,从而获得了此结果,然后$ k $ -group of $ \ mathbf {q} _ {j} $,最近由Kato建立。

In this paper, we give an explicit formula of Chevalley type, in terms of the Bruhat graph, for the quantum multiplication with the class of the line bundle associated to the anti-dominant minuscule fundamental weight $- \varpi_{k}$ in the torus-equivariant quantum $K$-group of the partial flag manifold $G/P_{J}$ (where $J = I \setminus \{k\}$) corresponding to the maximal (standard) parabolic subgroup $P_{J}$ of minuscule type in type $A$, $D$, $E$, or $B$. This result is obtained by proving a similar formula in a torus-equivariant $K$-group of the semi-infinite partial flag manifold $\mathbf{Q}_{J}$ of minuscule type, and then by making use of the isomorphism between the torus-equivariant quantum $K$-group of $G/P_{J}$ and the torus-equivariant $K$-group of $\mathbf{Q}_{J}$, recently established by Kato.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源