论文标题

在动态场景上使用基准数据集监督原始视频Denoising

Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文作者

Yue, Huanjing, Cao, Cong, Liao, Lei, Chu, Ronghe, Yang, Jingyu

论文摘要

近年来,真正的嘈杂图像denoising的监督学习策略一直在出现,并取得了令人鼓舞的结果。相比之下,由于缺乏动态场景的嘈杂清洁对,很少研究原始嘈杂视频的现实噪声。对于静态图像,无法使用长期曝光快门或平均多拍捕获干净的动态场景视频帧。在本文中,我们通过创建可控对象(例如玩具)的动议来解决此问题,并捕获每个静态时刻以生成干净的视频帧。通过这种方式,我们构建了一个具有55组嘈杂清洁视频的数据集,其ISO值范围从1600到25600不等。据我们所知,这是第一个带有嘈杂清洁对的动态视频数据集。相应地,我们通过探索视频框架的时间,空间和频道相关性来提出一个原始的视频Denoising网络(RVIDENET)。由于原始视频具有拜耳的模式,因此我们将其包装成四个子序列,即RGBG序列,这些序列由拟议的Rvidenet分别剥离,并最终融合到一个干净的视频中。此外,我们的网络不仅输出了原始的降解结果,还通过浏览图像信号处理(ISP)模块来输出SRGB结果,该模块使用户能够使用他们喜欢的ISP生成SRGB结果。实验结果表明,我们的方法优于最先进的视频和原始图像,并在室内和室外视频上均可使用算法。

In recent years, the supervised learning strategy for real noisy image denoising has been emerging and has achieved promising results. In contrast, realistic noise removal for raw noisy videos is rarely studied due to the lack of noisy-clean pairs for dynamic scenes. Clean video frames for dynamic scenes cannot be captured with a long-exposure shutter or averaging multi-shots as was done for static images. In this paper, we solve this problem by creating motions for controllable objects, such as toys, and capturing each static moment for multiple times to generate clean video frames. In this way, we construct a dataset with 55 groups of noisy-clean videos with ISO values ranging from 1600 to 25600. To our knowledge, this is the first dynamic video dataset with noisy-clean pairs. Correspondingly, we propose a raw video denoising network (RViDeNet) by exploring the temporal, spatial, and channel correlations of video frames. Since the raw video has Bayer patterns, we pack it into four sub-sequences, i.e RGBG sequences, which are denoised by the proposed RViDeNet separately and finally fused into a clean video. In addition, our network not only outputs a raw denoising result, but also the sRGB result by going through an image signal processing (ISP) module, which enables users to generate the sRGB result with their favourite ISPs. Experimental results demonstrate that our method outperforms state-of-the-art video and raw image denoising algorithms on both indoor and outdoor videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源