论文标题

DeepLPF:用于图像增强的深层局部参数过滤器

DeepLPF: Deep Local Parametric Filters for Image Enhancement

论文作者

Moran, Sean, Marza, Pierre, McDonagh, Steven, Parisot, Sarah, Slabaugh, Gregory

论文摘要

数字艺术家通常通过手动修饰来提高数字照片的美学质量。除全球调整外,专业图像编辑程序还提供了在图像的特定部分运行的本地调整工具。选项包括参数(渐变,径向过滤器)和无约束的刷子工具。这些高度表现力的工具可实现各种各样的本地图像增强功能。但是,它们的使用可能很耗时,需要艺术能力。最新的自动图像增强方法通常集中于学习像素级或全球增强功能。前者可能是嘈杂的,并且缺乏解释性,而后者则无法捕获细粒度的调整。在本文中,我们介绍了一种新型方法,可以使用三种不同类型的空间局部过滤器自动增强图像(椭圆滤波器,渐变过滤器,多项式滤波器)。我们介绍了一个被称为深局部参数过滤器(DEEPLPF)的深神经网络,该网络会回归这些空间局部过滤器的参数,然后自动应用以增强图像。 DEEPLPF提供了一种自然的模型正则化形式,并实现了可解释的直观调整,从而导致视觉上令人愉悦的结果。我们报告了多个基准测试,并表明DEEPLPF在MIT-Adobe-5K数据集的两个变体上产生最先进的性能,通常使用竞争方法所需的一小部分参数。

Digital artists often improve the aesthetic quality of digital photographs through manual retouching. Beyond global adjustments, professional image editing programs provide local adjustment tools operating on specific parts of an image. Options include parametric (graduated, radial filters) and unconstrained brush tools. These highly expressive tools enable a diverse set of local image enhancements. However, their use can be time consuming, and requires artistic capability. State-of-the-art automated image enhancement approaches typically focus on learning pixel-level or global enhancements. The former can be noisy and lack interpretability, while the latter can fail to capture fine-grained adjustments. In this paper, we introduce a novel approach to automatically enhance images using learned spatially local filters of three different types (Elliptical Filter, Graduated Filter, Polynomial Filter). We introduce a deep neural network, dubbed Deep Local Parametric Filters (DeepLPF), which regresses the parameters of these spatially localized filters that are then automatically applied to enhance the image. DeepLPF provides a natural form of model regularization and enables interpretable, intuitive adjustments that lead to visually pleasing results. We report on multiple benchmarks and show that DeepLPF produces state-of-the-art performance on two variants of the MIT-Adobe-5K dataset, often using a fraction of the parameters required for competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源