论文标题

纳米赫兹引力波检测和参数估计的机器学习与PULSAR时机阵列

Machine Learning for Nanohertz Gravitational Wave Detection and Parameter Estimation with Pulsar Timing Array

论文作者

Chen, MengNi, Zhong, Yuanhong, Feng, Yi, Li, Di, Li, Jin

论文摘要

研究表明,在不久的将来,使用脉冲星时阵列(PTA)是检测到非常低频引力波的最高潜力的方法之一。尽管尚未报道通过PTA捕获引力波(GWS),但许多相关的理论研究和一些有意义的检测限。在这项研究中,我们专注于单个超级二进制黑洞的纳米赫兹GW。给定特定的脉冲星(PSR J1909 $ - $ 3744,PSR J1713 $+$ 0747,PSR J0437 $ - $ 4715),可以模拟与高斯白噪声的PTA中的相应GW $ - 诱导的定时残留物。此外,我们报告了基于神经网络的机器学习的潜在GW来源的模拟PTA数据和参数估计的分类。作为分类器,当组合信号与噪声比$ \ geq $ \ geq $ 1.33 $ 1.33时,卷积神经网络显示出很高的精度。此外,我们应用了一个经常性的神经网络来估计源和光度距离的chirp质量($ \ MATHCAL {M} $)($ \ text {d} _ {p} $)的脉冲星和贝叶斯神经网络(BNN)以获得CHIRP质量估计的不确定性。对不确定性的了解对于天体物理观察至关重要。在我们的情况下,CHIRP质量估计的平均相对误差小于$ 13.6 \%$。尽管用于模拟PTA数据实现这些结果,但我们认为它们对于在PTA数据分析中实现智能处理至关重要。

Studies have shown that the use of pulsar timing arrays (PTAs) is among the approaches with the highest potential to detect very low-frequency gravitational waves in the near future. Although the capture of gravitational waves (GWs) by PTAs has not been reported yet, many related theoretical studies and some meaningful detection limits have been reported. In this study, we focused on the nanohertz GWs from individual supermassive binary black holes. Given specific pulsars (PSR J1909$-$3744, PSR J1713$+$0747, PSR J0437$-$4715), the corresponding GW$-$induced timing residuals in PTAs with Gaussian white noise can be simulated. Further, we report the classification of the simulated PTA data and parameter estimation for potential GW sources using machine learning based on neural networks. As a classifier, the convolutional neural network shows high accuracy when the combined signal to noise ratio $\geq$1.33 for our simulated data. Further, we applied a recurrent neural network to estimate the chirp mass ($\mathcal{M}$) of the source and luminosity distance ($\text{D}_{p}$) of the pulsars and Bayesian neural networks (BNNs) to obtain the uncertainties of chirp mass estimation. Knowledge of the uncertainties is crucial to astrophysical observation. In our case, the mean relative error of chirp mass estimation is less than $13.6\%$. Although these results are achieved for simulated PTA data, we believe that they will be important for realizing intelligent processing in PTA data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源