论文标题
支持用于计算天体物理学和空间科学的高级测地网框架的技术
Technologies for supporting high-order geodesic mesh frameworks for computational astrophysics and space sciences
论文作者
论文摘要
天体物理学,空间物理和地球物理学中的许多重要问题都涉及球形物体附近(例如恒星或行星)附近(可能是电离的)气体的流动。这种系统的几何形状自然利用基于球形网格的数值方案。尽管具有正交性,但由于极轴的奇异性,极性(纬度)网格还是不适合计算的,导致区域尺寸的高度不均匀分布。后果是(a)由于区域纵横比的差异很大而准确性丧失,以及(b)由于对时间的严重限制,计算效率差。基于使用柏拉图固体作为模板的中央投影,地球网络解决各向异性问题,但增加了所得计算机代码的复杂性。我们描述了三角形测量网(TGM)上的Euler和MHD方程系统的新有限体积实现,该系统在时空中最高可准确,并保留了磁场与机器精度的差异。本文详细讨论了TGM的产生,域分解技术,三维保守重建以及时间阶段。
Many important problems in astrophysics, space physics, and geophysics involve flows of (possibly ionized) gases in the vicinity of a spherical object, such as a star or planet. The geometry of such a system naturally favors numerical schemes based on a spherical mesh. Despite its orthogonality property, the polar (latitude-longitude) mesh is ill suited for computation because of the singularity on the polar axis, leading to a highly non-uniform distribution of zone sizes. The consequences are (a) loss of accuracy due to large variations in zone aspect ratios, and (b) poor computational efficiency from a severe limitations on the time stepping. Geodesic meshes, based on a central projection using a Platonic solid as a template, solve the anisotropy problem, but increase the complexity of the resulting computer code. We describe a new finite volume implementation of Euler and MHD systems of equations on a triangular geodesic mesh (TGM) that is accurate up to fourth order in space and time and conserves the divergence of magnetic field to machine precision. The paper discusses in detail the generation of a TGM, the domain decomposition techniques, three-dimensional conservative reconstruction, and time stepping.