论文标题

潜在的疾病预测学习

Latent-Graph Learning for Disease Prediction

论文作者

Cosmo, Luca, Kazi, Anees, Ahmadi, Seyed-Ahmad, Navab, Nassir, Bronstein, Michael

论文摘要

最近,图形卷积网络(GCN)已被证明是用于计算机辅助诊断(CADX)和疾病预测的强大机器学习工具。这些模型中的一个关键组成部分是构建人口图,其中图邻接矩阵代表成对的患者相似性。到目前为止,通常基于人口统计学或临床分数等元功能来定义相似性指标。但是,由于GCN对图结构非常敏感,因此需要仔细调整度量。在本文中,我们在CADX领域首次证明,可以向GCN疾病分类的下游任务学习一个最佳的图形。为此,我们为动态图和局部图形修剪提出了一种新颖的,端到端的可训练图学习体系结构。与常用的光谱GCN方法不同,我们的GCN是空间和诱导的,因此也可以推断出以前看不见的患者。我们通过学习的两个CADX医学问题的图表表明了显着的分类改进。我们使用人工数据集进一步解释和可视化了这一结果,从而强调了图形学习的重要性,以便在医疗应用中对GCN进行更准确,强大的推断。

Recently, Graph Convolutional Networks (GCNs) have proven to be a powerful machine learning tool for Computer-Aided Diagnosis (CADx) and disease prediction. A key component in these models is to build a population graph, where the graph adjacency matrix represents pair-wise patient similarities. Until now, the similarity metrics have been defined manually, usually based on meta-features like demographics or clinical scores. The definition of the metric, however, needs careful tuning, as GCNs are very sensitive to the graph structure. In this paper, we demonstrate for the first time in the CADx domain that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification. To this end, we propose a novel, end-to-end trainable graph learning architecture for dynamic and localized graph pruning. Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well. We demonstrate significant classification improvements with our learned graph on two CADx problems in medicine. We further explain and visualize this result using an artificial dataset, underlining the importance of graph learning for more accurate and robust inference with GCNs in medical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源