论文标题

HyperGraph简化:将路径和方法链接到ZH-Calculus

Hypergraph Simplification: Linking the Path-sum Approach to the ZH-calculus

论文作者

Lemonnier, Louis, van de Wetering, John, Kissinger, Aleks

论文摘要

ZH-Calculus是量子位之间的线性图的完整图形表结石,该线性图接收了由Toffoli+Hadamard Gate Set产生的直接编码的量子图和电路。 在本文中,我们在ZH-Calculus和Path-sum形式主义之间建立了对应关系,这是Amy最近引入的验证量子电路的技术。特别是,我们发现ZH-Dagrams的某些规范形式与路径和表达式之间的培训。然后,我们介绍并证明了ZH-Calculus的几个新简化规则,这些规则直接与Path-sum形式主义的简化规则有关。相对不透明的路径和规则自然而然地来自ZH-Calculus中的两个强大的重写规则。首先是基于局部互补的熟悉的图理论简化的扩展,并与其超图理论类似物枢转:超本分离的互补和超偏见。第二个是Kuijpers等人引入的图形傅立叶变换,它可以有效简化ZH-DAGRAGRAM,该图形编码具有任意实际系数的多项式多项式。

The ZH-calculus is a complete graphical calculus for linear maps between qubits that admits a straightforward encoding of hypergraph states and circuits arising from the Toffoli+Hadamard gate set. In this paper, we establish a correspondence between the ZH-calculus and the path-sum formalism, a technique recently introduced by Amy to verify quantum circuits. In particular, we find a bijection between certain canonical forms of ZH-diagrams and path-sum expressions. We then introduce and prove several new simplification rules for the ZH-calculus, which are in direct correspondence to the simplification rules of the path-sum formalism. The relatively opaque path-sum rules are shown to arise naturally from two powerful families of rewrite rules in the ZH-calculus. The first is the extension of the familiar graph-theoretic simplifications based on local complementation and pivoting to their hypergraph-theoretic analogues: hyper-local complementation and hyper-pivoting. The second is the graphical Fourier transform introduced by Kuijpers et al., which enables effective simplification of ZH-diagrams encoding multi-linear phase polynomials with arbitrary real coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源