论文标题
一种通过内核密度估计估算光度函数的灵活方法
A flexible method for estimating luminosity functions via Kernel Density Estimation
论文作者
论文摘要
我们提出了一种基于内核密度估计(KDE)估算光度函数(LFS)的灵活方法,这是现代统计中最流行的非参数密度估计方法,以克服围绕LFS的问题。将KDE应用于LFS的一个挑战是如何治疗边界偏置问题,因为天文学调查通常由于调查的磁通密度限制,主要是由于截短的样品。我们使用两个解决方案,即转换KDE方法($ \ hat ϕ _ {\ Mathrm {t}} $)和转换 - 反射kde方法($ \ hat ϕ _ {\ mathrm {tr}} $)以减少边界偏见。我们开发了一个新的可能性交叉验证标准,用于选择最佳带宽,基于$ \ hat ϕ _ {\ mathrm {t}} $和$ \ hatrm {\ mathrm {\ mathrm {\ tr} $ n nears a samllo nestllo nearte n sam samllo nears a sam a samllo nearte n sam a sam a samllo nestllo neartion sam n n n n sam a sam akllo nestllo 程序。仿真结果表明,$ \ hat ϕ _ {\ mathrm {t}} $和$ \ hat ϕ _ {\ mathrm {tr}} $的执行效果更好,尤其是在调查范围或LF的光线范围的稀疏数据方案中,尤其是在LF的光线范围内。为了进一步提高我们的KDE方法的性能,我们开发了转换反射自适应KDE方法($ \ hat ϕ _ {\ mathrm {tra}} $)。蒙特卡洛模拟表明它在性能方面具有良好的稳定性和可靠性,并且比使用BINNED方法更准确。通过将我们的自适应KDE方法应用于类星体样本,我们发现它可以实现与先前工作的严格确定相当的估计,同时对LF的假设更少。我们开发的KDE方法具有参数和非参数方法的优点。
We propose a flexible method for estimating luminosity functions (LFs) based on kernel density estimation (KDE), the most popular nonparametric density estimation approach developed in modern statistics, to overcome issues surrounding binning of LFs. One challenge in applying KDE to LFs is how to treat the boundary bias problem, since astronomical surveys usually obtain truncated samples predominantly due to the flux-density limits of surveys. We use two solutions, the transformation KDE method ($\hatϕ_{\mathrm{t}}$), and the transformation-reflection KDE method ($\hatϕ_{\mathrm{tr}}$) to reduce the boundary bias. We develop a new likelihood cross-validation criterion for selecting optimal bandwidths, based on which, the posterior probability distribution of bandwidth and transformation parameters for $\hatϕ_{\mathrm{t}}$ and $\hatϕ_{\mathrm{tr}}$ are derived within a Markov chain Monte Carlo (MCMC) sampling procedure. The simulation result shows that $\hatϕ_{\mathrm{t}}$ and $\hatϕ_{\mathrm{tr}}$ perform better than the traditional binned method, especially in the sparse data regime around the flux-limit of a survey or at the bright-end of the LF. To further improve the performance of our KDE methods, we develop the transformation-reflection adaptive KDE approach ($\hatϕ_{\mathrm{tra}}$). Monte Carlo simulations suggest that it has a good stability and reliability in performance, and is around an order of magnitude more accurate than using the binned method. By applying our adaptive KDE method to a quasar sample, we find that it achieves estimates comparable to the rigorous determination by a previous work, while making far fewer assumptions about the LF. The KDE method we develop has the advantages of both parametric and non-parametric methods.