论文标题

快速编码Ag代码$ C_ {AB} $ curves

Fast Encoding of AG Codes over $C_{ab}$ Curves

论文作者

Beelen, Peter, Rosenkilde, Johan, Solomatov, Grigory

论文摘要

我们研究了用于在某些平面曲线上编码单点代数几何(Ag)代码的算法,称为$ C_ {AB} $曲线,以及算法以反转编码地图,我们称之为“ Unecroding”。一些$ c_ {ab} $曲线有很多点,甚至最大,例如Hermitian曲线。我们的编码resp。未编码算法具有复杂性$ \ tilde {o}(n^{3/2})$ resp。 $ \ tilde {o}(qn)$用于任何$ c_ {ab} $曲线满足非常温和的假设,其中$ n $是代码长度,而$ q $ the Base Field大小,而$ \ tilde {o} $忽略了估算中的常数和对数因素。对于曲线的代码,其评估点在类似网格的结构上,尤其是Hermitian曲线和Norm-Trace曲线,我们表明我们的算法具有准线性时间复杂性$ \ tilde {o}(n)$用于这两个操作。对于无限的曲线家族,其点数的数量是远离Hasse的一个不变的因素 - WEEL BOND BOND,我们的编码算法具有复杂性$ \ tilde {o}(n^{5/4})$,而Unconconding具有$ \ tilde {o} {o}(n^{3/2})$。

We investigate algorithms for encoding of one-point algebraic geometry (AG) codes over certain plane curves called $C_{ab}$ curves, as well as algorithms for inverting the encoding map, which we call "unencoding". Some $C_{ab}$ curves have many points or are even maximal, e.g. the Hermitian curve. Our encoding resp. unencoding algorithms have complexity $\tilde{O}(n^{3/2})$ resp. $\tilde{O}(qn)$ for AG codes over any $C_{ab}$ curve satisfying very mild assumptions, where $n$ is the code length and $q$ the base field size, and $\tilde{O}$ ignores constants and logarithmic factors in the estimate. For codes over curves whose evaluation points lie on a grid-like structure, notably the Hermitian curve and norm-trace curves, we show that our algorithms have quasi-linear time complexity $\tilde{O}(n)$ for both operations. For infinite families of curves whose number of points is a constant factor away from the Hasse--Weil bound, our encoding algorithm has complexity $\tilde{O}(n^{5/4})$ while unencoding has $\tilde{O}(n^{3/2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源