论文标题
在半场上的旗帜歧管
Flag manifolds over semifields
论文作者
论文摘要
在本文中,我们为任何kac-moody root基准开发了在半场上的国旗歧管理论。我们表明,在半场上的旗帜歧管接收了与Kac-Moody Datum相关的半场上的单体自然作用,并接受了细胞分解。这扩展了Lusztig,Postnikov,Rietsch和其他人(有限类型)的lusztig,Postnikov,Rietsch和其他作品,以及Lusztig,Speyer,Williams,Williams(有限类型)的Williams的工作。作为一种副产品,我们证明了lusztig对有限类型的完全非负标志歧管的二元性的猜想。
In this paper, we develop the theory of flag manifold over a semifield for any Kac-Moody root datum. We show that the flag manifold over a semifield admits a natural action of the monoid over that semifield associated with the Kac-Moody datum and admits a cellular decomposition. This extends the previous work of Lusztig, Postnikov, Rietsch and others on the totally nonnegative flag manifolds (of finite type) and the work of Lusztig, Speyer, Williams on the tropical flag manifolds (of finite type). As a by-product, we prove a conjecture of Lusztig on the duality of totally nonnegative flag manifold of finite type.