论文标题

逐渐消失的对抗领域适应的桥梁

Gradually Vanishing Bridge for Adversarial Domain Adaptation

论文作者

Cui, Shuhao, Wang, Shuhui, Zhuo, Junbao, Su, Chi, Huang, Qingming, Tian, Qi

论文摘要

在无监督的域适应性中,丰富的领域特定特征为学习域名的表示带来了巨大的挑战。但是,在现有解决方案中,域差异被认为是直接最小化的,这在实践中很难实现。某些方法通过在表示形式中明确建模域,不变和特定于域的部分来减轻困难,但是显式结构的不利影响在于构造的域 - 不变表示中残留域特异性特异性特征。在本文中,我们在发电机和鉴别器上配备了对抗域的适应性,并逐渐消失的桥(GVB)机制。在发电机上,GVB不仅可以减少总体转移难度,而且还可以减少残留域特异性特征在域不变表示中的影响。在鉴别器上,GVB有助于提高歧视能力,并平衡对抗性训练过程。在三个具有挑战性的数据集上进行的实验表明,我们的GVB方法的表现优于强大的竞争对手,并且与其他对抗方法合作。该代码可在https://github.com/cuishuhao/gvb上找到。

In unsupervised domain adaptation, rich domain-specific characteristics bring great challenge to learn domain-invariant representations. However, domain discrepancy is considered to be directly minimized in existing solutions, which is difficult to achieve in practice. Some methods alleviate the difficulty by explicitly modeling domain-invariant and domain-specific parts in the representations, but the adverse influence of the explicit construction lies in the residual domain-specific characteristics in the constructed domain-invariant representations. In this paper, we equip adversarial domain adaptation with Gradually Vanishing Bridge (GVB) mechanism on both generator and discriminator. On the generator, GVB could not only reduce the overall transfer difficulty, but also reduce the influence of the residual domain-specific characteristics in domain-invariant representations. On the discriminator, GVB contributes to enhance the discriminating ability, and balance the adversarial training process. Experiments on three challenging datasets show that our GVB methods outperform strong competitors, and cooperate well with other adversarial methods. The code is available at https://github.com/cuishuhao/GVB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源