论文标题

光场超级分辨率的高阶残差网络

High-Order Residual Network for Light Field Super-Resolution

论文作者

Meng, Nan, Wu, Xiaofei, Liu, Jianzhuang, Lam, Edmund Y.

论文摘要

全体摄像机通常牺牲其SAI的空间分辨率,从不同的角度获取几何信息。已经提出了几种方法来减轻这种空间 - 角质权衡,但是很少有效利用光场(LF)数据的结构特性。在本文中,我们提出了一个新型的高阶残差网络,以从LF层次学习以进行重建的几何特征。提出的网络中的一个重要组成部分是高阶残差块(HRB),它通过考虑从所有输入视图的信息来了解局部几何特征。在完全获得从每个HRB中学到的局部特征后,我们的模型将通过全球残差学习提取代表性的几何特征,以进行空间角度提升。此外,遵循改进网络,以最大程度地减少感知损失来进一步增强空间细节。与以前的工作相比,我们的模型是针对LF固有的丰富结构量身定制的,因此可以减少非lambertian和遮挡区域附近的伪像。实验结果表明,我们的方法即使在具有挑战性的区域中也能够进行高质量的重建,并且胜过最先进的单个图像或LF重建方法,具有定量测量和视觉评估。

Plenoptic cameras usually sacrifice the spatial resolution of their SAIs to acquire geometry information from different viewpoints. Several methods have been proposed to mitigate such spatio-angular trade-off, but seldom make use of the structural properties of the light field (LF) data efficiently. In this paper, we propose a novel high-order residual network to learn the geometric features hierarchically from the LF for reconstruction. An important component in the proposed network is the high-order residual block (HRB), which learns the local geometric features by considering the information from all input views. After fully obtaining the local features learned from each HRB, our model extracts the representative geometric features for spatio-angular upsampling through the global residual learning. Additionally, a refinement network is followed to further enhance the spatial details by minimizing a perceptual loss. Compared with previous work, our model is tailored to the rich structure inherent in the LF, and therefore can reduce the artifacts near non-Lambertian and occlusion regions. Experimental results show that our approach enables high-quality reconstruction even in challenging regions and outperforms state-of-the-art single image or LF reconstruction methods with both quantitative measurements and visual evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源