论文标题

多路径区域挖掘用于点云上弱监督的3D语义分割

Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds

论文作者

Wei, Jiacheng, Lin, Guosheng, Yap, Kim-Hui, Hung, Tzu-Yi, Xie, Lihua

论文摘要

点云为场景理解提供了内在的几何信息和表面上下文。现有的点云分割方法需要大量完全标记的数据。使用高级深度传感器,大规模3D数据集的收集不再是一个繁琐的过程。但是,在大规模数据集上手动生产点级标签是时间和劳动密集型。在本文中,我们提出了一种弱监督的方法,以使用3D点云上的弱标签来预测点级别的结果。我们介绍了我们的多路径区域挖掘模块,以生成来自较弱标签的分类网络的伪点级标签。它使用不同的注意模块从网络功能的各个方面挖掘了每个类别的本地化提示。然后,我们使用点级伪标签以完全监督的方式训练点云分割网络。据我们所知,这是第一种使用RAW 3D空间上云级弱标签来训练点云语义分割网络的方法。在我们的环境中,3D弱标签仅表示输入样本中出现的类。我们在RAW 3D点云数据上讨论场景 - 云级弱标签,并对它们进行深入的实验。在Scannet数据集上,我们接受了子云级标签训练的结果与一些完全监督的方法兼容。

Point clouds provide intrinsic geometric information and surface context for scene understanding. Existing methods for point cloud segmentation require a large amount of fully labeled data. Using advanced depth sensors, collection of large scale 3D dataset is no longer a cumbersome process. However, manually producing point-level label on the large scale dataset is time and labor-intensive. In this paper, we propose a weakly supervised approach to predict point-level results using weak labels on 3D point clouds. We introduce our multi-path region mining module to generate pseudo point-level label from a classification network trained with weak labels. It mines the localization cues for each class from various aspects of the network feature using different attention modules. Then, we use the point-level pseudo labels to train a point cloud segmentation network in a fully supervised manner. To the best of our knowledge, this is the first method that uses cloud-level weak labels on raw 3D space to train a point cloud semantic segmentation network. In our setting, the 3D weak labels only indicate the classes that appeared in our input sample. We discuss both scene- and subcloud-level weakly labels on raw 3D point cloud data and perform in-depth experiments on them. On ScanNet dataset, our result trained with subcloud-level labels is compatible with some fully supervised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源