论文标题

含有半柔性聚合物链的淬火缺陷的统计:精确的结果(ii)

Statistics of Quenched Defects Containing Semi-Flexible Polymer Chain: Exact Results (II)

论文作者

Mishra, Pramod Kumar

论文摘要

我们描述了使用完全定向的自我避免的行走晶格模型在两个和三个维度中讨论缺陷半灵性均聚合物链的热力学方法。这些缺陷位于一条线上,这些缺陷不与半灵性聚合物链的单体保持在热平衡中。我。 e。我们考虑了目前的手稿中缺陷的半灵性聚合物链的情况。 n个单体长的半灵性聚合物链的构象存在m缺陷,我们精确地计算了Q实现N-学者长构象的Q实现的数量;因此,我们得出有限长度的缺陷半灵性聚合物链的自由能的精确表达(即使用固定的粒子集合方法);我们还使用大规范集合理论在热力学极限中为缺陷的半灵性聚合物链提供了分区函数的精确表达。本手稿中描述的方法可以很容易地扩展到各向同性/定向步行晶格模型的另一种缺陷聚合物链的情况。

We describe method to discuss thermodynamics of a defected semi-flexible homo-polymer chain in the two and three dimensions using fully directed self-avoiding walk lattice model. The defects are located along a line and these defects are not in the thermal equilibrium with the monomers of the semi-flexible polymer chain; i. e. we consider the case of defected semi-flexible polymer chain in the present manuscript for the case of quenched defects. There are m defects on the conformations of the N monomers long semi-flexible polymer chain and we exactly count the number of Q realizations of the defected conformations of N-monomers long self-avoiding semi-flexible polymer chain; and thus we derive the exact expression of the free energy of the defected semi-flexible polymer chain for the finite length (i. e. using the fixed particle ensemble method); and we also derive exact expression of the partition function for the defected self-avoiding semi-flexible polymer chain in the thermodynamic limit using the grand canonical ensemble theory. The method described in this manuscript may be easily extended to another case of the defected polymer chain for isotropic/directed walk lattice models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源