论文标题

无固定周期作为枢轴最小的图形的erdős-hajnal属性

The Erdős-Hajnal property for graphs with no fixed cycle as a pivot-minor

论文作者

Kim, Jaehoon, Oum, Sang-il

论文摘要

我们证明,对于每个整数$ k $,都存在$ \ varepsilon> 0 $,因此对于每个n-vertex Graph $ g $,note-minor同构对$ c_k $,都存在脱节集$ a,b \ subseteq v(g)$ a,b \ subseteq v(g)$ \ geq \ varepsilon n $,$ a $是$ b $的完整或反填充。这证明了erdős-hajnal的类似物对图类别的猜想,而没有枢轴最小的同构为$ c_k $。

We prove that for every integer $k$, there exists $\varepsilon > 0$ such that for every n-vertex graph $G$ with no pivot-minor isomorphic to $C_k$, there exist disjoint sets $A,B \subseteq V(G)$ such that $|A|,|B| \geq \varepsilon n$, and $A$ is either complete or anticomplete to $B$. This proves the analog of the Erdős-Hajnal conjecture for the class of graphs with no pivot-minor isomorphic to $C_k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源