论文标题
Edgeslice:切片无线边缘计算网络,具有分散的深度加固学习
EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep Reinforcement Learning
论文作者
论文摘要
5G和边缘计算将服务于有多种资源要求的各种新兴用例,例如无线电,运输和计算。网络切片是一种有前途的技术,用于创建可以根据不同用例的要求来定制的虚拟网络。提供网络切片需要具有挑战性的端到端资源编排。在本文中,我们设计了一个分散的资源编排系统,名为Edgeslice,用于动态端到端网络切片。 Edgeslice引入了一种新的分散的深入增强学习(D-DRL)方法,以有效地协调端到端资源。 D-DRL由性能协调员和多个编排代理组成。性能协调员在所有编排代理中管理资源编排政策,以确保网络切片的服务水平协议(SLA)。编排代理人了解网络切片的资源需求,并相应地协调资源分配,以优化在受约束的网络和计算资源下的切片的性能。我们设计无线电,运输和计算管理器,以在运行时启用端到端资源的动态配置。我们通过OpenAirInterface LTE网络,OpenDaylight SDN交换机和CUDA GPU平台在端到端无线边缘计算网络的原型上实现Edgeslice。通过实验和痕量驱动的模拟评估了Edgeslice的性能。评估结果表明,与基线相比,在性能,可伸缩性和兼容性方面,Edgeslice取得了很大改善。
5G and edge computing will serve various emerging use cases that have diverse requirements of multiple resources, e.g., radio, transportation, and computing. Network slicing is a promising technology for creating virtual networks that can be customized according to the requirements of different use cases. Provisioning network slices requires end-to-end resource orchestration which is challenging. In this paper, we design a decentralized resource orchestration system named EdgeSlice for dynamic end-to-end network slicing. EdgeSlice introduces a new decentralized deep reinforcement learning (D-DRL) method to efficiently orchestrate end-to-end resources. D-DRL is composed of a performance coordinator and multiple orchestration agents. The performance coordinator manages the resource orchestration policies in all the orchestration agents to ensure the service level agreement (SLA) of network slices. The orchestration agent learns the resource demands of network slices and orchestrates the resource allocation accordingly to optimize the performance of the slices under the constrained networking and computing resources. We design radio, transport and computing manager to enable dynamic configuration of end-to-end resources at runtime. We implement EdgeSlice on a prototype of the end-to-end wireless edge computing network with OpenAirInterface LTE network, OpenDayLight SDN switches, and CUDA GPU platform. The performance of EdgeSlice is evaluated through both experiments and trace-driven simulations. The evaluation results show that EdgeSlice achieves much improvement as compared to baseline in terms of performance, scalability, compatibility.