论文标题

声波诱导的FMR辅助自旋扭转转换,垂直MTJ具有各向异性变化

Acoustic Wave Induced FMR Assisted Spin-Torque Switching of Perpendicular MTJs with Anisotropy Variation

论文作者

Misba, Walid Al, Rajib, Md. Mahadi, Bhattacharya, Dhritiman, Atulasimha, Jayasimha

论文摘要

我们已经研究了表面声波(SAW)诱导的铁磁共振(FMR)辅助自旋转移扭矩(STT)垂直MTJ(P-MTJ)的转换,并使用包括热噪声效应的微磁模拟使用不良模拟进行了不良模拟。通过合适的频率激发,锯可以在磁刻录材料中诱导铁磁共振,并且磁化强度可以在圆锥体中进攻,从垂直方向高挠度。随着通过侧向各向异性变化以及室温热噪声纳入不均匀性,不同增长的磁化进攻可能显着不一致。有趣的是,即使在不同各向异性的晶粒之间,不同晶粒中的进动位于相位。然而,高平均挠度角可以通过显着降低STT电流来补充STT开关。即使施加的应力诱导的各向异性变化远低于总各向异性屏障。这项工作表明,SAW辅助开关可以提高能效,同时可扩展到非常小的尺寸,这对于STT-RAM在技术上很重要,并阐明了这种范式在现实的场景中具有潜在鲁棒性的物理机制,具有热噪声和材料不良性不良性。

We have investigated Surface Acoustic Wave (SAW) induced ferromagnetic resonance (FMR) assisted Spin Transfer Torque (STT) switching of perpendicular MTJ (p-MTJ) with inhomogeneities using micromagnetic simulations that include the effect of thermal noise. With suitable frequency excitation, the SAW can induce ferromagnetic resonance in magnetostrictive materials, and the magnetization can precesses in a cone with high deflection from the perpendicular direction. With incorporation of inhomogeneity via lateral anisotropy variation as well as room temperature thermal noise, the magnetization precession in different gains can be significantly incoherent. Interestingly, the precession in different grains are found to be in phase, even though the precession amplitude (angle of deflection from the perpendicular direction) vary across grains of different anisotropy. Nevertheless, the high mean deflection angle can complement the STT switching by reducing the STT current significantly; even though the applied stress induced change in anisotropy is much lower than the total anisotropy barrier. This work indicates that SAW assisted switching can improve energy efficiency while being scalable to very small dimensions, which is technologically important for STT-RAM and elucidates the physical mechanism for the potential robustness of this paradigm in realistic scenarios with thermal noise and material inhomogeneity

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源