论文标题
Valence Quark分布在Hadron中的新功能
A Novel Feature of Valence Quark Distributions in Hadrons
论文作者
论文摘要
检查由Bjorken X,$ h(x,t)\ equiv xq_v(x,t)$加权的价值夸克分布的最大演变的演变,我们观察到峰值处的$ h(x,t)$应该成为一个参数函数; $ h(x_p,t)=φ(x_p(t))$,其中$ x_p $是峰的位置,$ t = \ log {q^2} $。该观察结果用于推导一个新的模型独立关系,该关系通过$ x_p $以$ x_p $在$ x_p $的$ x_p $衍生功能$ x_p $衍生函数$φ(x_p(x_p(t))$的QCD Evolution方程中连接$ x_p $中价的部分衍生物(PDFS)。使用经验PDFS对这种关系的数值分析导致观察$φ(x_p(t))= h(x_p,t)= ce^{d x_p(t)} $的指数形式,以导致近代的next领先顺序pdfs pdfs的pdfs pdfs的所有$ q^2 $ Q^2 $ coply covers covers covers covers covers copers covers copers copers copers of 4订单。观察到的“高度位置”相关函数的指数$ d $随着近似顺序的增加而收敛。该结果适用于所有考虑的PDF集。对于脉冲夸克分布也观察到了类似的关系,表明所获得的关系对于任何非单词党派分布都可能是通用的。观察到的“高度 - 位置”相关性也用于表明没有有限的数字交换可以描述峰值在固定$ q^2 $处的峰位置上价夸克分布的分析行为。
Examining the evolution of the maximum of valence quark distribution weighted by Bjorken x, $h(x,t)\equiv xq_V(x,t)$, we observe that $h(x,t)$ at the peak should become a one parameter function; $h(x_p,t)=Φ(x_p(t))$, where $x_p$ is the position of the peak and $t= \log{Q^2}$. This observation is used to derive a new model independent relation which connects the partial derivative of the valence parton distribution functions (PDFs) in $x_p$ to the QCD evolution equation through the $x_p$-derivative of the logarithm of the function $Φ(x_p(t))$. A numerical analysis of this relation using empirical PDFs results in a observation of the exponential form of the $Φ(x_p(t)) = h(x_p,t) = Ce^{D x_p(t)}$ for leading to next-to-next leading order approximations of PDFs for the all $Q^2$ range covering four orders in magnitude. The exponent, $D$, of the observed "height-position" correlation function converges with the increase of the order of approximation. This result holds for all PDF sets considered. A similar relation is observed also for pion valence quark distribution, indicating that the obtained relation may be universal for any non-singlet partonic distribution. The observed "height - position" correlation is used also to indicate that no finite number exchanges can describe the analytic behavior of the valence quark distribution at the position of the peak at fixed $Q^2$.