论文标题

关于有限组的因素化的注释

A note on factorizations of finite groups

论文作者

Bergman, George M.

论文摘要

在问题的第19.35 kourovka笔记本上,M。H。H. Hooshmand询问是否有有限的组$ g $和分解$ \ mathrm {card}(g)= n_1 \ ldots n_k $,一个人总是可以找到$ a_1,\ ldots $ a_k $ g $ $ g $ $ \ n_1 $ g = a_1 \ ldots a_k; $等价,使得组乘法$ a_1 \ times \ ldots \ times \ times a_k \ to g $是一项培养。 我们表明,对于$ g $,在4个元素上交替组,$ k = 3 $和$(n_1,n_2,n_3)=(2,3,2)$,答案为负。然后,我们概括了证明中使用的一些工具,并注意一个空旷的问题。

In Question 19.35 of the Kourovka Notebook, M. H. Hooshmand asks whether, given a finite group $G$ and a factorization $\mathrm{card}(G)= n_1\ldots n_k$, one can always find subsets $A_1,\ldots,A_k$ of $G$ with $\mathrm{card}(A_i)=n_i$ such that $G=A_1\ldots A_k;$ equivalently, such that the group multiplication map $A_1\times\ldots\times A_k\to G$ is a bijection. We show that for $G$ the alternating group on 4 elements, $k=3$, and $(n_1,n_2,n_3) = (2,3,2)$, the answer is negative. We then generalize some of the tools used in our proof, and note an open question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源