论文标题

圆柱“累积”方面的非线性电动力学

Nonlinear electrodynamics at cylindrical "cumulation" fronts

论文作者

Pegoraro, F., Bulanov, S. V.

论文摘要

已经显示了真空中的圆柱电磁场(E. I. Zababakhin,M。N. Nechaev,{\ it Soviet Physics jetp},{\ bf 6},345(1958),345(1958)),以表现出幅度“累积”。发现自相似波的振幅增加而没有从圆柱轴反射的磁场前轴的有限距离界限。在本文中,我们建议利用这种圆柱累积过程,作为通往非线性量子电动力学(QED)效应的超强电磁场的新途径。我们表明,这些效应在Euler Heisenberg Lagrangian框架内的长波长度极限中所述,引起了累积前沿传播速度的半径依赖性降低。 {此外,我们计算$ e^+$ - $ e^ - $ $ $ $ $ $ $ $ $ $ $ $ $ - $配对的生产率,并表明生成比例的总数是场幅度的第六个功率。

Converging cylindrical electromagnetic fields in vacuum have been shown (E. I. Zababakhin, M. N. Nechaev, {\it Soviet Physics JETP}, {\bf 6}, 345 (1958)) to exhibit amplitude "cumulation". It was found that the amplitude of self-similar waves increases without bounds at finite distances from the axis on the front of the fields reflected from the cylindrical axis. In the present paper we propose to exploit this cylindrical cumulation process as a possible new path towards the generation of ultra-strong electromagnetic fields where nonlinear quantum electrodynamics (QED) effects come into play. We show that these effects, as described in the long wave-length limit within the framework of the Euler Heisenberg Lagrangian, induce a radius-dependent reduction of the propagation speed of the cumulation front. {Furthermore we compute the $e^+$-$e^-$ pair production rate at the cumulation front and show that the total number of pairs that are generated scales as the sixth power of the field amplitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源