论文标题

使用稀疏控制输入的ERDOS-RENYI图中网络意见的可控性

Controllability of Network Opinion in Erdos-Renyi Graphs using Sparse Control Inputs

论文作者

Joseph, Geethu, Nettasinghe, Buddhika, Krishnamurthy, Vikram, Varshney, Pramod

论文摘要

本文考虑了一个社交网络,该网络模型为ERDOS RENYI随机图。网络中的每个人都使用邻居的意见的加权平均值来更新她的意见。我们探讨了外部操纵代理如何将这些人的意见推向所需的状态,对他们的先天意见具有有限的添加性影响。我们表明,在没有限制其影响力的情况下,几乎可以肯定的是,在有限的时间内(即,系统是可控的),操纵代理可以将网络意见引导到任何任意价值。但是,当控件输入受到稀疏性的约束时,网络意见可以以一定的概率控制。我们根据征级浓度函数和小球概率使用随机向量的浓度属性来降低这种概率。此外,通过数值模拟,我们将ERDOS RENYI图中可控性的概率与幂律图的可控性概率进行了比较,以说明两种模型之间的关键差异在可控性方面。我们的理论和数值结果阐明了网络意见的可控性如何取决于参数,例如网络的大小和连接性,以及操纵代理所面临的稀疏性约束。

This paper considers a social network modeled as an Erdos Renyi random graph. Each individual in the network updates her opinion using the weighted average of the opinions of her neighbors. We explore how an external manipulative agent can drive the opinions of these individuals to a desired state with a limited additive influence on their innate opinions. We show that the manipulative agent can steer the network opinion to any arbitrary value in finite time (i.e., the system is controllable) almost surely when there is no restriction on her influence. However, when the control input is sparsity constrained, the network opinion is controllable with some probability. We lower bound this probability using the concentration properties of random vectors based on the Levy concentration function and small ball probabilities. Further, through numerical simulations, we compare the probability of controllability in Erdos Renyi graphs with that of power-law graphs to illustrate the key differences between the two models in terms of controllability. Our theoretical and numerical results shed light on how controllability of the network opinion depends on the parameters such as the size and the connectivity of the network, and the sparsity constraints faced by the manipulative agent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源