论文标题
具有移动边缘计算的时间敏感网络中的能源感知卸载
Energy-Aware Offloading in Time-Sensitive Networks with Mobile Edge Computing
论文作者
论文摘要
移动边缘计算(MEC)使最终用户的丰富服务能够提供高质量的经验(QOE),并与本地计算相比有助于节能,但导致沟通延迟的增加。在本文中,我们研究了如何共同优化任务卸载和资源分配,以最大程度地减少正交频部多个基于访问的MEC网络中的能源消耗,在该网络中,可以通过部分卸载在本地用户和MEC服务器上处理时间敏感的任务。由于问题的优化变量是强烈耦合的,因此我们首先将Orignal问题分解为三个称为卸载选择(PO),传输功率优化(PT)以及子载体和计算资源分配(PS)的子问题,然后提出迭代算法以在序列中处理它们。要具体而言,我们得出了PO的封闭形式解决方案,使用等效的参数凸编程来应对PT中比率总和的形式的目标函数,并且由于其NP硬度而在双重域中通过一种交替的方式处理PS。仿真结果表明,所提出的算法优于现有方案。
Mobile Edge Computing (MEC) enables rich services in close proximity to the end users to provide high quality of experience (QoE) and contributes to energy conservation compared with local computing, but results in increased communication latency. In this paper, we investigate how to jointly optimize task offloading and resource allocation to minimize the energy consumption in an orthogonal frequency division multiple access-based MEC networks, where the time-sensitive tasks can be processed at both local users and MEC server via partial offloading. Since the optimization variables of the problem are strongly coupled, we first decompose the orignal problem into three subproblems named as offloading selection (PO ), transmission power optimization (PT ), and subcarriers and computing resource allocation (PS ), and then propose an iterative algorithm to deal with them in a sequence. To be specific, we derive the closed-form solution for PO , employ the equivalent parametric convex programming to cope with the objective function which is in the form of sum of ratios in PT , and deal with PS by an alternating way in the dual domain due to its NP-hardness. Simulation results demonstrate that the proposed algorithm outperforms the existing schemes.