论文标题

多站点MEC系统的联合计算卸载,SFC放置和资源分配

Joint Computation Offloading, SFC Placement, and Resource Allocation for Multi-Site MEC Systems

论文作者

Nguyen, Phuong-Duy, Le, Long Bao

论文摘要

网络功能虚拟化(NFV)和移动边缘计算(MEC)是有望支持资源要求移动应用程序的5G技术。在NFV中,必须处理必须按特定顺序执行一组网络功能的服务功能链(SFC)。此外,MEC技术使从移动用户到远程服务器的服务请求卸载有可能减少移动应用程序的能源消耗和处理延迟。本文考虑了多站点MEC系统中计算卸载,资源分配和SFC放置的优化。我们的设计目标是最大程度地减少加权归一化能源消耗和计算成本,但要受到最大可耐受延迟约束的影响。为了解决基础混合整数和非线性优化问题,我们采用了分解方法,在其中迭代优化了计算卸载,SFC放置和计算资源分配以获得有效的解决方案。数值结果表明,与基准测试算法相比,不同参数对系统性能和所提出算法的出色性能的影响。

Network function Virtualization (NFV) and Mobile Edge Computing (MEC) are promising 5G technologies to support resource-demanding mobile applications. In NFV, one must process the service function chain (SFC) in which a set of network functions must be executed in a specific order. Moreover, the MEC technology enables computation offloading of service requests from mobile users to remote servers to potentially reduce energy consumption and processing delay for the mobile application. This paper considers the optimization of the computation offloading, resource allocation, and SFC placement in the multi-site MEC system. Our design objective is to minimize the weighted normalized energy consumption and computing cost subject to the maximum tolerable delay constraint. To solve the underlying mixed integer and non-linear optimization problem, we employ the decomposition approach where we iteratively optimize the computation offloading, SFC placement and computing resource allocation to obtain an efficient solution. Numerical results show the impacts of different parameters on the system performance and the superior performance of the proposed algorithm compared to benchmarking algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源