论文标题
在切线球束上与触摸伪金属结构
On tangent sphere bundles with contact pseudo-metric structures
论文作者
论文摘要
在本文中,我们在切线球体束$ t_ \ varepsilon m $上引入了联系人伪金属结构。我们证明,切线球束$ t _ {\ varepsilon} m $是$(κ,μ)$ - 当且仅当歧管$ m $具有恒定的截面曲率时,请联系伪金属歧管。另外,我们证明,切线球束上的这种结构为$ k $ -contact,如果基本歧管具有恒定的曲率$ \ varepsilon $。
In this paper, we introduce a contact pseudo-metric structure on a tangent sphere bundle $T_\varepsilon M$. we prove that the tangent sphere bundle $T_{\varepsilon}M$ is $(κ, μ)$-contact pseudo-metric manifold if and only if the manifold $M$ is of constant sectional curvature. Also, we prove that this structure on the tangent sphere bundle is $K$-contact iff the base manifold has constant curvature $\varepsilon$.