论文标题
使用正交挤压和连续变量纠缠的量子增强的纤维电陀螺仪
Quantum-Enhanced Fiber-Optic Gyroscopes Using Quadrature Squeezing and Continuous Variable Entanglement
论文作者
论文摘要
我们分析了通过将量子光线挤压真空吸尘器注入纤维的SAGNAC干涉仪来增强的光纤陀螺仪设计。在存在纤维损失的情况下,我们根据同型测量的角度速度估计值来计算经典的,激光驱动的光纤陀螺仪的最大可达到的增强。我们发现一个恒定的增强因素取决于系统中引入的压缩程度,但收益降低了$ 10 $ - $ 15 $ dB的压缩。在固定总纤维长度的现实约束下,我们表明,将可用的光纤分割为多种模板键入挤压真空的多个SAGNAC干涉仪,从而在各个干涉仪中建立量子纠缠,从而将旋转估计差异提高了$ e \ e \ 2.718 $。
We analyze a fiber-optic gyroscope design enhanced by the injection of quantum-optical squeezed vacuum into a fiber-based Sagnac interferometer. In the presence of fiber loss, we compute the maximum attainable enhancement over a classical, laser-driven fiber-optic gyroscope in terms of the angular velocity estimate variance from a homodyne measurement. We find a constant enhancement factor that depends on the degree of squeezing introduced into the system but has diminishing returns beyond $10$--$15$ dB of squeezing. Under a realistic constraint of fixed total fiber length, we show that segmenting the available fiber into multiple Sagnac interferometers fed with a multi-mode-entangled squeezed vacuum, thereby establishing quantum entanglement across the individual interferometers, improves the rotation estimation variance by a factor of $e\approx2.718$.