论文标题

(1,1)的交点和Monge-Ampere操作员的定义域

Intersection of (1,1)-currents and the domain of definition of the Monge-Ampere operator

论文作者

Huynh, Dinh Tuan, Kaufmann, Lucas, Vu, Duc-Viet

论文摘要

我们在通过密度电流定义的DINH-Sibibony相交理论的框架内研究了Monge-amp \'操作员。我们表明,如果$ u $是属于Blocki-Cegrell类的plurisubharmonic功能,那么$ \ text {dd}^c u $的dinh sibbony $ n $ fold fold fold fold自我产生与经典定义的monge-ampère量度(\ dd}^c u $相吻合(恰好)

We study the Monge-Amp\` ere operator within the framework of Dinh-Sibony's intersection theory defined via density currents. We show that if $u$ is a plurisubharmonic function belonging to the Blocki-Cegrell class, then the Dinh-Sibony $n$-fold self-product of $\text{dd}^c u$ exists and coincides with the classically defined Monge-Ampère measure $(\text{dd}^c u)^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源