论文标题
简单的$ u(1)$晶格理论中的无障碍本地化
Disorder-free localization in a simple $U(1)$ lattice gauge theory
论文作者
论文摘要
由于疾病的存在而导致的定位对于我们当前对孤立的量子系统中松弛的理解至关重要。多体局部阶段构成了复杂相互作用系统热化的强大替代品,但最近引起了障碍的重要性。从翻译不变的$(1 + 1)$ - 尺寸量子电动力学开始,我们修改了量规场的动力学,并揭示了一种无序定位的机制。我们考虑了连续模型的两个不同离散化,从而在一种情况下产生了自由屈服的可溶模型,另一种情况则是相互作用的模型。我们诊断出全球量子淬火后远程平衡动力学中的定位。
Localization due to the presence of disorder has proven crucial for our current understanding of relaxation in isolated quantum systems. The many-body localized phase constitutes a robust alternative to the thermalization of complex interacting systems, but recently the importance of disorder has been brought into question. Starting from translationally invariant $(1 + 1)$-dimensional quantum electrodynamics, we modify the dynamics of the gauge field and reveal a mechanism of disorder-free localization. We consider two different discretizations of the continuum model resulting in a free-fermion soluble model in one case and an interacting model in the other. We diagnose the localization in the far-from-equilibrium dynamics following a global quantum quench.