论文标题

7d超对称阳米尔在高血压3-Sasakian歧管上

7D supersymmetric Yang-Mills on hypertoric 3-Sasakian manifolds

论文作者

Iakovidis, Nikolaos, Qiu, Jian, Rocén, Andreas, Zabzine, Maxim

论文摘要

我们研究了3-撒崎流形的7D最大超对称阳米尔斯理论。对于超级锥的歧管,我们得出了分区函数的扰动部分。答案涉及一个特殊的函数,该功能在通过高血过性数据确定的有理凸多面体锥中计数整数晶格点。这也为文献中塑性功能的先前枚举结果提供了更大的几何结构。基于物理直觉,我们为此类功能提供了分解结果。即将在即将发表的论文中详细介绍了使用索引计算的全部证明。

We study 7D maximally supersymmetric Yang-Mills theory on 3-Sasakian manifolds. For manifolds whose hyper-Kähler cones are hypertoric we derive the perturbative part of the partition function. The answer involves a special function that counts integer lattice points in a rational convex polyhedral cone determined by hypertoric data. This also gives a more geometric structure to previous enumeration results of holomorphic functions in the literature. Based on physics intuition, we provide a factorisation result for such functions. The full proof of this factorisation using index calculations will be detailed in a forthcoming paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源