论文标题

半监督学习的量子退火

Quantum Annealing for Semi-Supervised Learning

论文作者

Zheng, Yu-Lin, Zhang, Wen, Zhou, Cheng, Geng, Wei

论文摘要

量子技术的最新进展导致了可编程量子退火器的开发和制造,这些量子退火器有望比其经典同行更快地解决某些组合优化问题。半监督学习是一种机器学习技术,可利用标记和未标记的数据进行培训,这使得只有少量标记数据的良好分类器。在本文中,我们提出并理论上借助量子退火技术来分析基于图的半监督学习方法,该技术在保持良好精度的同时有效地利用了量子资源。我们说明了两个分类示例,即使涉及一小部分(20%)的标记数据,该方法的可行性也是如此。

Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical counterparts. Semi-supervised learning is a machine learning technique that makes use of both labeled and unlabeled data for training, which enables a good classifier with only a small amount of labeled data. In this paper, we propose and theoretically analyze a graph-based semi-supervised learning method with the aid of the quantum annealing technique, which efficiently utilize the quantum resources while maintaining a good accuracy. We illustrate two classification examples, suggesting the feasibility of this method even with a small portion (20%) of labeled data is involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源