论文标题

6d $ \ m rathcal {n} =(2,0)$理论中的表面运算符

Surface operators in the 6d $\mathcal{N} = (2,0)$ theory

论文作者

Drukker, Nadav, Probst, Malte, Trépanier, Maxime

论文摘要

6d $ \ Mathcal {n} =(2,0)$理论具有自然的表面操作员可观察物,它们在许多方面都与Wilson循环相似。我们提出了一个“本地BPS”表面操作员的定义,并研究其保形异常,即当地操作员的共形维度的类似物。我们研究了大型$ n $理论的Abelian理论和全息偶,以完善先前使用的技术。将非恒定耦合引入标量场允许额外的异常系数,在这两种情况下,我们都发现这与几何异常系数有关,这表明由于超对称性引起的一般关系。我们还对具有圆锥形奇点的表面发表评论。

The 6d $\mathcal{N}=(2,0)$ theory has natural surface operator observables, which are akin in many ways to Wilson loops in gauge theories. We propose a definition of a "locally BPS" surface operator and study its conformal anomalies, the analog of the conformal dimension of local operators. We study the abelian theory and the holographic dual of the large $N$ theory refining previously used techniques. Introducing non-constant couplings to the scalar fields allows for an extra anomaly coefficient, which we find in both cases to be related to one of the geometrical anomaly coefficients, suggesting a general relation due to supersymmetry. We also comment on surfaces with conical singularities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源