论文标题
硬件神经网络中的噪声扰动下的布尔学习
Boolean learning under noise-perturbations in hardware neural networks
论文作者
论文摘要
神经网络的高效率硬件集成受益于实现非线性,网络连接性和在物理基材中的全面学习。多个系统最近实施了一些或全部这些操作,但重点是应对技术挑战。关于硬件神经网络中学习的基本问题在很大程度上尚未探索。在此类体系结构中,尤其是不可避免的,在这里我们使用光电子复发性神经网络研究了它与学习算法的相互作用。我们发现噪声在收敛期间强烈改变了系统的路径,并且令人惊讶的是完全脱离了最终的读数重量矩阵。这突出了理解体系结构,噪声和学习算法作为交互参与者的重要性,因此确定了对嘈杂,模拟系统优化的数学工具的需求。
A high efficiency hardware integration of neural networks benefits from realizing nonlinearity, network connectivity and learning fully in a physical substrate. Multiple systems have recently implemented some or all of these operations, yet the focus was placed on addressing technological challenges. Fundamental questions regarding learning in hardware neural networks remain largely unexplored. Noise in particular is unavoidable in such architectures, and here we investigate its interaction with a learning algorithm using an opto-electronic recurrent neural network. We find that noise strongly modifies the system's path during convergence, and surprisingly fully decorrelates the final readout weight matrices. This highlights the importance of understanding architecture, noise and learning algorithm as interacting players, and therefore identifies the need for mathematical tools for noisy, analogue system optimization.